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For a hydraulic breaking crack at a considerable depth the additional liquid pressure 
created in order to overcome rock strength is small compared with mine pressure Pg. There- 
fore the condition of smooth joining is approximately fulfilled [i, 2]. This condition is 
exactly correct in the stage of filling an already existing crack with liquid while it is 
only partly open, i.e., the joining lines for the sides do not reach the edge. 

The smooth joining condition for a circular crack has the form [i, 2] 

limx~L (L - -  X)-~/2W(X) = 0 (1)  

(X i s  r a d i a l  c o o r d i n a t e  in t h e  c r a c k  p l a n e ,  L i s  c u r r e n t  smooth j o i n i n g  r a d i u s ,  W(X) i s  c r a c k  
open ing  p r o f i l e ) .  

Below a smooth j o i n i n g  c r a c k  i s  s t u d i e d  assuming  smoothness  f o r  t h e  pumping reg ime  when 
a c c e l e r a t i o n  o f  t h e  f low c a u s e d  by a change  in  t h e  o v e r a l l  f l ow r a t e  o f  t h e  i n j e c t e d  l i q u i d  
i s  assumed t o  be s m a l l  [ 3 ] .  

We f o r m u l a t e  t h e  r e s t  o f  t h e  e q u a t i o n s  f o r  t h e  p rob lem assuming  t h a t  t h e  m a t e r i a l  i s  
e l a s t i c  and t h e  l i q u i d  i n j e c t e d  from a p o i n t  s o u r c e  i n t o  t h e  c e n t e r  o f  t h e  c r a c k  i s  incom- 
p r e s s i b l e  and n o n f i l t e r i n g .  We w r i t e  t h e  Sneddon e q u a t i o n  [1] f o r  t h e  p r o f i l e  W(X) of  a c r a c k  
o p e n i n g  unde r  t h e  a c t i o n  o f  p r e s s u r e  P(X) in  a more c o n v e n i e n t  form f o r  t h e  h y d r a u l i c  b r e a k -  
ing  p rob tem [4] 

r L 

(2) 
0 max(X,Xt )  

Here F i s  l o a d e d  s e c t i o n  r a d i u s ;  max (X, X z) i s  t h e  g r e a t e r  o f  t h e  two numbers in  b r a c k e t s ;  
D = E[2(1  - v2) ]  -1 i s  a c o m b i n a t i o n  o f  s t a n d a r d  e l a s t i c i t y  c o n s t a n t s ;  P ' ( X )  i s  r a d i a l  p r e s -  
s u r e  g r a d i e n t .  To t h e  r i g h t - h a n d  p a r t  i t  i s  n e c e s s a r y  t o  add w i t h  a minus s i g n  t h e  v a l u e  

2 P g V L  ~ Wg = . ~  -- X 2, (3) 

which takes account of the contribution of mine pressure [!]. 

Liquid flow in a narrow crack in an inertialess approximation is described by the Bous- 
sinesq equation [5] 

P'  = - -3~Q(4~XW3)  -1, Q : Qo - O~/OT, (4)  

where H i s  dynamic v i s c o s i t y ;  Q(X) i s  v o l u m e t r i c  f low r a t e  t h r o u g h  a s e c t i o n  o f  a c r a c k  h a v i n g  
a r a d i u s  X; Q0 i s  s o u r c e  p r o d u c t i v i t y ,  i . e . ,  i s  t h e  volume of  l i q u i d  i n j e c t e d  e v e r y  s econd ;  
~(X) i s  t h e  volume of  t h e  c e n t r a l  p a r t  o f  t h e  c r a c k  c a v i t y  bounded by t h e  s e c t i o n  of  f i x e d  
radius X referred to: 

X 

(x) : 4~ ~ x~w (x j  dX~ 
o 

I t  i s  n o t e d  t h a t  ~(F)  a g r e e s  w i t h  volume m s o f  l i q u i d  in  t h e  c r a c k  a t  t h e  i n s t a n t  in  q u e s t i o n .  

I f  we i g n o r e  t h e  c o r r e c t i o n s  caused  by t h e  r a t e  o f  change in  Q0, t h e n  t h e  mass c o n s e r v a -  
t i o n  r u l e  [ s e c o n d  e q u a t i o n  o f  ( 4 ) ]  may be t r a n s f o r m e d  to  

Q = Qoq, q = i -- O~/aQ s. (5)  

The set of equations is formulated. For simplification of analyzing it we change over 
to dimensionless variables. Instead of radial coordinates X and F we introduce the corre- 
sponding angular variables ~ and y by the equations X = L sin ~, F = L sin ?. As a radial scale 
we take Lg = D(l.5~2~Qo)l/3(2Pg)-4/3, and for the opening scale W. : (3btQoL)l/~(2~2D)-~/~ and we 
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write an equation for the dimensionless change as follows: 

W = W , v c o s %  W g = W , v g c o s %  L : L g v ~ / 3 .  

Here  v s p e c i f i e s  d i m e n s i o n l e s s  o p e n i n g ;  vg i s  j o i n i n g  r a d i u s .  We a l s o  i n t r o d u c e  c h a r a c t e r -  
i s t i c  volume ~g=O.759Qo(nD)~P~ a and w i t h  i t s  h e l p  we make ~ and a s d i m e n s i o n l e s s :  

= ~ ,  ~ = ~ ~Od~, 0 (r = ~n  ~ ~os~ , ,  ~ = ~ ,  ~ = ,! ~Od~ (6 )  
0 0 

(~ and ~s a r e  t h e  c o r r e s p o n d i n g  d i m e n s i o n l e s s  v o l u m e s ) .  

We f o r m u l a t e  t h e  main  e q u a t i o n  d e t e r m i n i n g  v(~) in  t h e  f i l l i n g  zone  ~ ?  ( f r o m  what  
f o l l o w s  i t  w i l l  be  s e e n  t h a t  f i n d i n g  t h e  r e s t  o f  t h e  d i m e n s i o n l e s s  v a l u e s  i s  r e d u c e d  t o  a l g e -  
b r a i c  o p e r a t i o n s  and q u a d r a t u r e s ) .  With  t h i s  a im we s u b s t i t u t e  (4 )  in  Eq. (2)  w r i t t e n  t a k i n g  
a c c o u n t  o f  ( 3 ) .  By e x c l u d i n g  P '  and c h a n g i n g  o v e r  t o  d i m e n s i o n l e s s  v a r i a b l e s ,  and a l s o  
drawing attention to (i), after transformation we find that 

v (r = G / ( ~ ) =  ~ v (r r / (r dr ] (r = q (r 0 -~ (~p) v -~ (r 
0 

G(q), ~) = cos~- -cos - lq~  dqcos~ sin2~l--sin2~ 11-~, q)~/2.  
max~q0,~) sin2 ~ -- sin~ qo 

(7) 

Condition (i), which in terms of v(~) has the form v(v/2) = 0, is satisfied automatically 
and the following representation is correct 

~,~ = g (/) = j" (1 - cos ~) / (~) d~. ( S )  
0 

In order to obtain from (7) an equation with respect to v it is necessary to express q in 
terms of v. In order to derive the appropriate relationship we substitute Eqs. (6) in (5). 
The scale multiple ~g depends on single variable Q0 which is assumed to be a slowly changing 
function, and this means that it is possible to take ~g beyond the differentiation sign. By 
taking this into account after simple computations we have 

4 
3UgO ~ VgO.v -- ~ u gv sin 2 ~ cos 

3UgO s ~ VgOs,~ ( 9 )  
v 

~ = j ~Od~, ~ , ~  = ~ ued~ + , (~) 0 (~). 
0 0 

Here u = v ~; uo = vo v; index 7 after the comma means differentiation with respect to ~. '; ~ ~ !  ~ 

Taking account of (9) relationship (7) in section ~ ?  is an equation with respect to the 
corresponding part of v(~), containing integral transformations with respect to variable ~ and 
differentiation with respect to parameter y. It would appear that a Cauchy problem arises 
with respect to u However, the actual dependence of q on u, ug appears to be weak and it is 
easy to find an approximate expression for q free from differentiation with respect to 7. 
In order to substantiate this we draw attention to the fact that in the process of filling 
there are rapidly and slowly changing variables. In particular, radius L changes more rapidly 
than the degree of filling y, and therefore the dependence on radius of the amount of opening 
appears to marked. According to the considerations of dimensionality W - L. In part, the 
dependence on L is contained in the scale multiple W, ~ L I/4 ~ v~/3, so that v ~ L ~/4 ~ Vg. 
In view of this v may be presented in the form of a derivative of Vg and slowly changing 
function y. If during differentiation derivatives from the second factor are ignored, then 
u = ugvg-lv. We substitute this equation in (9) and in subsequent numerical calculations 
we make the justified assumption of smallness of the value 0.25 ~v(y)0(?)(ueo~) -I over the whole 
range of change in y. Then for q we obtain an approximate expression which does not contain 
differential operations with respect to u 

( i ~cos~) .  (i0) q~--qo = i - - ~ l \ ~ - - ~ v s i n 2  

Substitution of (I0) in (7) gives a unidimensional nonlinear integral equation with 
respect to v. For convergence of subsequent approximations in the given class of integral 
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equations with power nonlinearity it is necessary to transform the equation so that: the 
right-hand part exhibits the property of zero level uniformity with action on v(~) [3, 4]. 
This condition is satisfied by the representation 

v = G~ t~, ~o = v ~ (~) ~ G (~, r ! (~) d~,  / = qo (ova) -~,  
o 

since it is evident that G0(~v) = G0(v) with ~ = const. 

We note that Eq. (I0) appears to be accurate for injection regimes of the form Q0 = • 
(• = const). Here ~ = const, i.e., the corresponding solution is self-modeling [2]. 

It is possible to make approximation (i0) more definite without turning to the Cauchy 
problem. With this aim we return from (i0) to Eq. (9) but we shall consider v and u as 
independent variables and we attempt to obtain an additional equation for u not containing 
higher derivatives with respect to ~. By differentiating both parts of equalities (7) and 
(8) with respect to ~ we have 

u = - 3 G ( h w - D  + G(q,~O-Iv -~) + G,v[, G v](~) ---- G(% ?)1(?), 
Ug : --3g(]uv -~) -~ g(q,~O-lu -~) + g,~(/), g,~(]) ~-- (t - -  cos ?)/(y), 

In order to be free from higher derivatives in these relationships, instead of q,y we shall 
use an approximate expression 

q,v~--qo,v = ~2 2 ~,v~-- ( o s ~ , v - - y ( ~ , v v - - ~ u ) s i n 2 ~ c o s ~  , (Ii) 

and  f o r  c o n v e r g e n c e  o f  t h e  l a s t  a p p r o x i m a t i o n s  we r e w r i t e  them i n  t h e  f o r m  

t [3 (u - -  G (]uv-~)) + V (qo,vO-~v -3) + G v/l, u = -  T 

i [3 (ue - g (fuv-~)) + g (qo,vO-~v-D + g,~ (DI, Ug ~,-~- 

where q0,u is taken from (ii). 

As numerical calculations showed, with use of approximation (i0) the maximum error in 
determining v does not exceed 8% so that the first approximation is quite effective and a more 
precise definition of it is rather in principle of more practical value. 
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Now we consider how other variables are calculated after v(~) is determined in the fill- 
ing zone. In the unwetted part v is found from Eq. (7), and Vg is found from (8). It is 
easy to show that pressure distribution is specified by a relationship of the form 

P = Pgv71p, P = ~ ]d~ " 

D i m e n s i o n l e s s  v o l u m e  m s i s  c a l c u l a t e d  f r o m  ( 6 ) .  As a m e a s u r e  o f  y i e l d i n g  C f o r  a c r a c k  
we take the ratio of opening and pressure averaged for radius L. For fi it is easy to obtain 
an expression 

2Lg 4/3 1 v c o s ~  p cos ~d~.  C = ~ v g c ,  c =  
0 

If the joining radius L is previously unknown, then in accordance with the undimension- 
alequations, in order to calculate dimensional quantities values of the following complexes 
are necessary: v~/~ for radius,4~vcos~/~ for opening, v~m s for the volume of liquid in the 
crack, p/v~ for pressure, and v= c for yielding. Presented in Figs. 1 and 2 are the depen- 
dences of v~ = v(0), ms, v~/3c a~d 7 on parameter Vg. Profiles of pressure p/Vg and opening 

~/3vcos~ for some values of 7 are shown in Figs. 3 and 4 (curves 1-3 for 7 = 1.5, 1.4, i.i, 
respectively). With an increase in Vg functions v0, ms, p/vg, and 7 tend asymptotically 
towards a constant. This makes it possible to consider a crack of large size without having 
to resort to solving Eq. (7) with 7 close to ~/2. 

Since variables are governed by a single parameter of state T, in calculating dimen- 
sional values it is necessary to establish the connection between regime parameters of state 
at a given instant, scale multiples, and values of formal parameter 7. Let, for example, val- 
ues of Q0 and a s be prescribed. Then ~g is calculated from Q0 and the value of the complex 
v~m s = ~s/~g is found. This makes it possible to determine parameter 7, and consequently the 
rest of the dimensionless complexes, after which it is easy to find the scale multiple and 
the corresponding dimensional values. 
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